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Abstract 

An embedded  bottom  boundary  layer  (EBBL)  scheme  is  developed to improve the 

bottom  topographic  representation  in  z-coordinate  ocean  general  circulation  models. 

The EBBL  scheme  is  based  on the combined  techniques of an  embedded  topography- 

following slab (Beckmann  and  Doscher  1997;  Gnanadesikan et al. 1998),  an  explicit 

turbulent  bottom  boundary  layer  (BBL)  (Killworth  and  Edwards  1998),  and  a  gener- 

alized  pressure  gradient  formulation  (Song  1998). The coupling  between the interior 

z-level  model  and the EBBL  model  is  achieved  by  exchanging entrainment/detrainment 

and  pressure  gradients at the bottom  layer  surface  which  allows  temporal  and spatial 

variations. 

The EBBL is  implemented  into  one of the most  widely  used z-coordinate  models, the 

Modular  Ocean  Model  (MOM). A test problem  with a source of dense  water  on  a  slope 

is  used. The new  EBBL  produces  significantly  more  realistic  plume  spreading than the 

existing BBL  scheme of Killworth  and  Edwards  (1998)  and  is  comparable to the results 

from a topography-following  coordinate  model  (SCRUM,  Song  and  Haidvogel  1994), 

which  is  believed to be  more suitable for such a problem.  Calculation of the momentum 

budget  demonstrates that  the improved  representation of  down-slope pressure  gradient 

formulation  plays  an important role  in the simulations of  dense  slope  flows. 

Sensitivity  experiments with different  grid  size,  model  parameters  and  density  con- 

trast between the cold source  water  and the warm  interior  water  are  carried out to 

test the robustness of the EBBL  scheme.  In contrast to the BBL  model  of  Killworth 

and  Edwards  (1998)  which tends to diffuse too much  dense  water  along isobaths, the 

EBBL  model  allows  dense  water to sink across isobaths  through  a very thin  bottom 

layer into the deep  ocean.  Even  in the coarser  resolution  case (1/4 degree  and  15  levels) 

the EBBL  produces  more  realistic  deep  water than the existing BBL  with  higher  reso- 

lution (1/8 degree  and 30 levels),  and at only  one  eighth the computational  cost. It is 

therefore  concluded that  the EBBL  scheme  presented  here  is  cost  effective  and  robust 

to model  resolution  and  mixing parameters,  and  should be  easily  implemented  in  any 

non-topography-following coordinate  ocean  model. 
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1 Introduction 

The global thermohaline circulation is driven by two sources of high-latitude dense water: 

the  input of North  Atlantic Deep Water  in the northern  North  Atlantic  and  the outflow of 

Antarctic  Bottom  Water formed over the continental shelf of the Weddell Sea. These dense 

waters form giant ocean cataracts  and  carry  about five Sv (one Sv equals  one million cubic 

meters of water  per second) through  a descent of 3 km or more (Whitehead 1989), and are 

believed to contribute significantly to  the deep-water formation (Dickson and Brown  1994; 

Jungclaus and Backhaus 1994), and  thereby to  the global thermohaline  circulation.  There also 

has been considerable interest recently in flow through narrow gaps since many of these small 

channels control large-scale features in the ocean, such as the  Strait of Gibraltar  (Bryden  and 

Kinder 1991; Price  and Baringer 1994), and the Drake  and Indonesian Passages (Broecker 

1991). 

Numerical models are widely  used in oceanographic research, and  are now beginning to 

reach the point where realistic models on basin- to global-scale are possible (Haidvogel and 

Bryan 1992; McWilliams 1997; Semtner 1995). It is therefore important  to have the dynamics 

of the numerical  model represent the dynamics of the real ocean as  accurately as possible. 

As topography is one of the most important  factors  in controlling oceanic circulation,  its 

representation in the numerical model must be as accurate as possible. Despite the recent 

progress in improving the representation of bottom topography  in the z-coordinate ocean 

models (Gerdes 1993,  Beckmann and Doscher  1997, Gnanadesikan et al. 1998, Killworth 

and Edwards 1998), realistically representing the  bottom topography  remains  one of the most 

challenging problems so far for ocean modelers (Roberts  and Wood  1997; Winton et al. 1998). 

The most widely used type of ocean model in large-scale modeling is the Bryan-Cox model 

(Bryan 1969;  Cox 1984), in which the ocean bottom topography is approximated steplike by 

fixed vertical levels. In reality, much of the dense outflow takes place through narrow sills or 

channels, which are subgrid-scale in the model,  and  small changes in the model topography 

to reflect these sills or channels have considerable impact on the large-scale circulation. For 
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example, the densest water formed in the North  Atlantic basin originates  in the Greenland- 

Iceland-Norway (GIN) basin and flows southward through narrow channels in the ridges 

between Greenland,  Iceland,  and Scotland. These waters form an important  part of the  total 

southward flow  of deep dense water  and play a significant part in controlling the thermohaline 

circulation  in the North  Atlantic and global ocean. Using a z-coordinate model, Roberts  and 

Woods  (1997) found that a small change in model topography could either  cut off completely 

the mass flux between the  Atlantic and the GIN basin or increase the mass flux too much 

across the ridges compared with observational estimates. A similar argument also applies to 

the Mediterranean outflow and its interaction  with the North  Atlantic  circulation. 

Another  related problem is the downslope transport of dense water, which is critical for 

producing adequate deep-water mass in ocean circulation models. Beckmann and Doscher 

(1997) found that  the z-coordinate model with the steplike  representation of the  bottom 

boundary  has a conceptual problem to simulate processes that depend  on sloping topography, 

especially for coarse resolution models. Downslope transport is treated as  a series of advective 

and convective events,  and  there is a significant dilution of any water mass crossing isobaths. 

Hughes (1995) also identified an anomaly  in the way the Cox (1984) code handles  steep 

topography in which steps of more than one  vertical grid point are present,  resulting in a 

decoupling of the density field  which drives the barotropic flow from the component which  is 

advected by the barotropic flow. In the steep slope regions where density is being advected, 

there will be a change in the  JEBAR  term, and  therefore  a change in the flow  field and 

the advection of density. This feedback loop can be  important in transferring  momentum 

input from surface wind forcing to  the  bottom of the ocean, so interference  with  this feedback 

loop can produce globally important consequences. Clearly the model  representation of steep 

topography needs be improved. 

In  addition to  the  steep topographic effects, proper treatments of large-scale and gently 

varying topography  are equally important for modeling the ocean general  circulation because 

of its role in  generating form stress (Haidvogel and Beckmann  1997) and  bottom friction sink 

in the momentum budget (Treguier and McWilliams 1990). The  inaccurate  representation of 
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kinematic  boundary conditions in z-coordinate models has been examined by Gerdes (1993), 

who found that  the model topography very often contains  distributions of flat bottom areas 

by  regions with  steep slopes, which result from the misrepresentation of a  gradually sloping 

bottom by a  discrete  set of possible depths. Associated with the localized large depth gradients 

are localized large vertical velocities which are effectively  seen  by the model as a 6 function 

forcing at  the lower boundary. The discretization of the kinematic  boundary condition in 

z-coordinate models involves a truncation  error which causes potentially large errors in  the 

vertical velocity field. As large scale topography provides the largest form  stress, some gentle 

and large-scale slopes of the ocean bottom  are neglected by the z-coordinate models, and  the 

main  eastward  momentum sink in the  bottom layer was no longer the  bottom friction  drag 

but  rather  the topographic form stress  resulting from different pressure forces on each side of 

the topography (Treguier and McWilliams 1990). 

In short,  the crude  steplike  approximation of topography can cause three  major problems: 

1. Downslope transport of dense water is treated as a series of advective and convective 

events, and  there is a significant dilution of water mass crossing isobaths,  with subsequent 

alteration of deep water  formation (Beckmann and Doscher 1997). 

2. Because observed bathymetry is projected on to a series of fixed model levels, misrep- 

resenting model topography for  some critical sills and channels can have large impact  on  the 

outflow as the  transport is highly dependent on the position and  shape of the topography 

(Roberts  and Wood 1997). 

3. The discretization of the kinematic  boundary condition in  z models introduces  trun- 

cation  error which causes potentially large errors in the vertical velocity field and affects the 

advection of density (Gerdes 1993). 

A number of studies have been undertaken to improve the topographic  representation 

problem in z-coordinate models. Adcroft et al. (1997)  proposed a shaved cell technique 

for the non-hydrostatic model of Marshall et al. (1996). Beckmann and Doscher  (1997) 

incorporated  a coupled terrain-following bottom boundary layer model for the  tracer equations 
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to improve the downslope spreading of dense waters in the Bryan-Cox model. Gnanadesikan 

et al. (1998) extended their approach by including the momentum  equations  in the boundary 

layer. Further, Killworth and Edwards (1998) incorporated a turbulent  bottom  boundary layer 

(BBL) model to  the free-surface version of the Bryan-Cox model, which  allows entrainment 

and  detrainment processes at  the interface of the  spatial and time varying bottom layer. 

This series of efforts has shown significant improvement of topographic  representation of z- 

coordinate models in  their idealized tests,  though  their effectiveness in  realistic  applications 

remains to be  demonstrated. 

In  this  paper, we propose an embedded bottom  boundary layer (EBBL) scheme for z- 

coordinate ocean models, based on the combined techniques of an embedded topography- 

following slab (Beckmann and Doscher  1997, Gnanadesikan et al. 1998), an explicit turbulent 

bottom  boundary layer (Killworth  and Edwards 1998) within the slab,  and a generalized 

pressure gradient  formulation (Song 1998). The paper is organized as follows. In section 2 we 

describe our EBBL scheme and the numerical implementation  into a free surface Bryan-Cox 

model (Killworth et al. 1991). Section 3 presents the  test problem results and comparisons 

with  results  from the existing BBL of Killworth and Edwards (1998; hereafter referred to as 

K&E ) and  from SCRUM (Song and  Haidvogell994).  The  sensitivity  and  momentum budget 

analysis are discussed in section 4, and Section 5 concludes this  paper. 

2 Model and EBBL Description 

2.1 Basic model equations 

Before  working through the methodology of our EBBL scheme, we first introduce  the hy- 

drostatic, Boussinesq primitive  equations  formulated on the z-coordinate system. Following 

Bryan (1969) and Cox (1984), the momentum equations are 

1 a p  d 
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the  temperature and  salinity  equations  are 

dS a - + V ” V S = -  
at a z  

the equation of state is 

and  the continuity  equation is 
au a v  a w  - + - + - = o .  
ax  dy a z  

We have used x, y, z as  Cartesian  coordinates  with  the z-axis pointing vertically upwards 

and  the xy-plane occupying the  undisturbed water surface. Eq.(2.1)-Eq.(2.6) are, respectively, 

conservation of east and  north momentum,  heat  and  salt, the hydrostatic  relation,  and zero 

flow divergence. The  notation used in  these  equations is as follows: 

the  x, y, z components of vector velocity v‘ 

temperature 

salinity 

density 

pressure 

Coriolis parameter 20  sin 0 

acceleration due to gravity 

vertical  eddy viscosity 

vertical  eddy diffusivity 

horizontal viscous and diffusive terms 

forcing terms. 

Although the equations  are solved in spherical polar coordinates as in Bryan  and Cox’s 

original formulation,  here we use Cartesian  coordinates for simplicity. Following  K&E, these 

5 



equations hold  in the interior of the fluid, between the free surface z = q(x, y , t )  (the code 

is based  on a free surface version, though a rigid  lid  can equally well be used) and a height 

h(x, y , t )  above the  bottom z = -D(x, y), where h(x, y , t )  is the moving thickness of the 

bottom boundary layer, and will be introduced in the following section. 

2.2 Embedded Bottom Boundary Layer (EBBL) 

A schematic of the EBBL scheme  is  shown in Figure 1. The topography-following slab is 

similar to  that used  by Beckmann  and Doscher  (1997) and Gnanadesikan et al. (1998).  Here 

the  bottom level of the slab can follow the continuous real topography (before modified  by 

vertical levels) and the  top level of the slab is set 1/4 of the  bottom grid below the lowest 

density point (see Figure 1). The reason  for  allowing the bottom layer to follow the real 

topography is to avoid sensitivity to vertical level resolution, as reported by Roberts  and 

Wood  (1997). Within the slab, a  turbulent  bottom  boundary layer, shown as a dashed line, 

is attached to a  computational level,  where the dots denote  tracer locations and bars denote 

velocity locations. It should be noted that multi-level layers can be applied within the slab if 

necessary, though here we only  use one layer  for simplicity. 

Within the bottom slab, momentum  and  tracers  are required to satisfy the following 

equations 

where  suffixes I and B denote interior and boundary values  respectively, CD is the  bottom 

drag coefficient, and w* denotes the  entrainment/detrainment velocity at  the surface of the 

bottom boundary layer. It should be pointed out  that  the primitive equations (2.1)-(2.6)  hold 
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only in the interior of the fluid,  between the free surface and  the moving bottom boundary 

layer height h(z ,  y, t )  above the ocean bottom z = -D(z, y). Rather  than  the normal bottom 

boundary conditions, vertical turbulent fluxes  vanish at z = -D(z, y); they  are replaced by 

the effects of entrainment/detrainment at z = -D(z, y) + h(s ,  y, t ) .  

The BBL  height h(z ,  y , t )  is calculated in  two steps. First,  it is calculated by Eq.(2.7)- 

Eq.(2.11) to conserve momentum  and tracers. The  momentum  and  tracer equations are 

solved  using the same numerical method as in solving the interior equations, while the  bottom 

boundary layer depth equation is  solved  by an explicit leapfrog time stepping with a weak 

Asselin filter method. The boundary layer depth has thus changed because of large-scale 

divergence or convergence of the flux in the layer. 

To include the turbulent effects, the depth of the BBL  is evaluated diagnostically at every 

time-step by the modified  Zilitinkevich and Mironov  (1996) formula 

(2.12) 

where the  bottom friction velocity  is  u* = f i l u ~  1 ,  N is the background buoyancy frequency, 

C n  = 0.5, and Ci = 20. 

The change between the formula value and that obtained from the large-scale dynamics is 

considered to represent the effects  of entrainment if the layer has deepened, or detrainment if 

the layer has become thinner. Tracers and momentum  are simply removed from the interior 

and mixed into  the boundary layer if the layer  is entraining. More detailed description of the 

entrainment  and  detrainment processes  is  given in Killworth and Edwards (1998). 

It should be noted that Eq.(2.12)  can be solved as 

(2.13) 

where ck = Cn/(2Ci). By  using a more sophisticated Mellor-Yamada  Level-I1 turbulence 

closure scheme, Weatherly and Martin(1978) obtained that  the  depth of the BBL can be 

identified with the height at which the turbulence mixing goes to zero and is approximated 

by h = 1.3u,/[f(l + N2/f2)1/4]. These two formulas agree quantitatively over the range 
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10 5 N /  f 5 100 (a reasonable range for the ocean). They also agree qualitatively over the 

rage 0 5 N /  f 5 100 in the sense that  the BBL depth decreases as N /  f increases. 

2.3 Pressure gradient  formulation 

Most of the deep water in the World  Ocean enters the abyss  by descending along continental 

slopes in thin (approximately 100 m) density-driven plumes. To resolve  such a  thin slope 

bottom  boundary layer, ocean models, especially their pressure gradient terms, should be 

formulated in a careful way.  However, it is  found that  the difficulty of maintaining the 

density signal as the plume descends the slope  is the main impediment to accurate simulation 

in ocean models (Haney 1991; Winton et al. 1998). 

For example, in a-coordinate models, the pressure gradient force  is traditionally deter- 

mined by the sum of two terms (Arakawa and Suarez 1983)) i.e., 

a p  a a p  ah 
d x  h a a a x  

(2.14) 

where a z / h .  The first term on the right involves the variation of pressure along a constant 

a-surface and the second  involves the usual vertical variation of pressure. Near steep topog- 

raphy these terms  are large, comparable in magnitude, and typically opposite in  sign. In such 

cases, a small error in computing either  term can result in a large error in the  total horizontal 

pressure gradient force. While in z-coordinate models, although there is no pressure gradient 

error, the slope bottom boundary is not resolved at all as it is approximated by a series of 

steps. 

As we noted, the pressure gradient terms in the interior equations (2.1)-(2.2) are formu- 

lated in z-coordinate levels,  while the corresponding terms in the BBL level  follow the bottom 

slab. It is our intention in this section to develop a pressure gradient scheme to couple these 

two systems consistently and accurately. 

Recently,  Song (1998) proposed a Jacobian formulation of pressure gradientsfor a general 
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vertical coordinate system. His formulation can be written as 

(2.15) 

where s represents any vertical coordinate and the first term in the right hand side of the equa- 

tion represents the surface pressure gradient. The ),-symbol emphasizes that  the derivative 

is carried out with z held constant. The expression in the brackets is the Jacobian 

a z a p  a2 dp  J ( z  )=-“” . 
7 p  as ax ax as (2.16) 

It should be noted that  the formulation in terms of a Jacobian is  significant since it is 

clearly independent of the particular form of the vertical coordinate. For examples, in the z 

coordinate system, s = z ,  then J ( z , p )  = g)s  = %), gives the original pressure gradients; in 

the a-coordinate system, s = a = ( z  - C ) / H ,  then J ( z ,  b)  = H g  - %%, where H = h + C, 
recovers the topography-following  scheme. For this reason, this formulation can be used to 

couple the two coordinate systems in a consistent way. Therefore, we can derive the pressure 

gradient formulation in the  bottom boundary layer as the following 

(2.17) 

where the surface pressure is replaced by the pressure at  the interface and s’ varies  between 

sZ = -D(x ,Y)  + h ( x , y , t )  and sg = -D(z,  y) as shown  in Figure 1. 

It can be seen that  the z-coordinate level  is naturally coupled with the topography- 

following coordinate system in the formulation. The first term in the right hand side of 

the formulation is the original pressure gradient as in the Bryan-Cox  code, but modified  for 

coupling to  the EBBL  as 

(2.18) 

where pb is the pressure in the  bottom cell of the original Bryan-Cox  code. The second term 

in the above  two equations becomes  significant  only  when the  bottom boundary layer exists 

and coupling  is  necessary. 
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This formulation can be applied in the case of multiple  bottom topography-following 

layers. For the case  where  only one level  is  used in the  bottom boundary layer, the pressure 

difference  across the grid cell (see Figure 1) for the  bottom layer can be simplified as 

where P X I  is the discrete form of interior pressure difference  (2.18), the second term is the 

discrete Jacobian. The following notations  are used: 

(2.20) 

- 1  
b" = - ( b l +  b ~ )  

2 

where  indices i represent locations of density p and I represents the interface box,  which 

in this case  is the  bottom grid cell. It can be seen that equation (2.19)  is simple and cost 

effective. 

Song  (1998) has shown that  the Jacobian formulation (2.15) is significantly more  accurate 

than  the conventional formulation (2.14). One of the main reasons  is that  the numerical errors 

tends to cancel  each other for those two symmetric  terms in the Jacobian form. For example, 

errors associated with linear isopycnal perturbations (e.g., p = cz )  are zero in form (2.15), 

but non-zero in form  (2.14) as shown  by Haney (1991)  in the case of non-uniformed vertical 

grid size  (which is true in our case). 

In addition, ocean models are required to conserve  physical properties of the continuous 

equations, such  as momentum  and total energy.  Song and Wright  (1998)  have  shown that 

the Jacobian pressure gradient formulation of (2.17) conserves momentum,  total energy and 

the  bottom pressure torque in both  analytical  and discrete form with any vertical coordinate 

system. The conservation of important physical properties in the continuous equations (2.7)- 

(2.11) has been addressed in Killworth and Edwards (1998). The combined equations of 

(2.7)-(2.11) and (2.17)  also  conserve the physical properties but the detailed derivations are 
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not included in this paper. 

3 Model Results and  Validations 

In this section, we use the same  test problem as used  by Killworth and Edwards (1998) to 

examine the model performance. The model domain consists of two connected basins, one 

cold  basin with 1 degree width in the  north  and  another warm  basin  with 4 degrees width in 

the south, centered at 42" N as  shown  in Figure 2. The two basins are 8 degrees  long and  are 

connected by a  strait of one  degree width. The cold basin is  shallower with a constant depth 

of 580 m, which represents denser coastal or shelf water as the salinity is set to be constant for 

the two  basins. The warm basin has a topography varying in the meridional direction only, 

from the 580 m  depth in the  north  to 4 km  depth at 42" N, representing the slope between 

the basins and  the deep ocean. The  maximum slope is about 4 percent. 

The  lateral boundary conditions for the model domain are zero flux and no slip wall at 

the northern  and  southern boundaries, and periodic at  the eastern  and western boundaries. 

The nice feature of this simple test problem is that  it allows the model to adjust itself  by 

transporting cool water at lower  layers to  the deep ocean in exchange for warmer water from 

upper layer,  rather  than by  specified  inflow,  which  forces the system. The dynamical processes 

associated with coastal density fronts and dense water plumes have been investigated in recent 

years with a variety of numerical ocean  models (Jungclaus  and Backhaus 1994; Whelless and 

Klinck 1995; Middleton and  Ramsden 1996). The dense coastal water at  the  bottom is 

expected to flow downslope,  being  self-advected to  the right and forming a plume. Details of 

the plume shape and translational speed of the plume head will depend on the topographic 

slope, rate of rotation,  initial anomaly thickness and density contrast,  entrainment  rate, values 

of bottom  friction,  lateral,  and vertical viscosity and diffusivity. It is not our intention to study 

in detail the plume dynamics, but  rather  to use the known  process to test our proposed EBBL 

scheme. 
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The model has 14 levels in the vertical, including the bottom layer, with vertical spacing 

increasing from 30 m  at  the uppermost level to 740 m at the deepest. Our standard experiment 

has a temperature  contract of 10" C, with initial  temperature 10" C in the cold basin and 

20" C in the warm basin. The salinity is constant with a value of 32 ppt. Surface fluxes of 

momentum  are set to zero and the surface temperature is  relaxed towards its initial value 

using a relaxation time scale of 50 days. Constant horizontal and vertical viscosities of lo4 

and 2 x m's-l are used. The horizontal and vertical diffusivities are 2 X lo3 and lo3 

m's-l. A quadratic  bottom friction coefficient 3 x is  used. 

The model is run prognostically  for 30 days, with the results shown in Figures 3-5, respec- 

tively for the following  cases:  model without BBL (the free-surface MOM model, Killworth 

et a1 1991), the model with K&E  BBL (Killworth and Edwards 1998), the model with the 

new  EBBL  scheme. Comparing these three  sets of results, we can see that  the MOM model 

without explicit BBL has much weaker  overflow in the layer immediately above the slope. 

Although the overflow of dense water produces a strong barotropic circulation, as in the case 

with a  bottom layer, it fails to propagate far either along or down the slope, contrary to 

expectation  and observations of the behavior of true slope currents. The flow in the 482 m 

depth level  shows a similar pattern  to  the barotropic flow  which suggests a weaker baroclinic 

effect. 

With  the K&E BBL, a  bottom boundary layer  is  developed and a region of cool,  dense 

water can be  seen moving down the slope and spreading westwards in the BBL.  However, the 

plume fails to  penetrate  further into the deep ocean and a significant amount of the dense 

water is  diffused  along isobaths on the upper slope. 

With  the new EBBL,  a better defined bottom boundary layer  is developed with a tongue- 

like shape spreading across isobath, and the dense bottom water penetrates  further south of 

the slope into  the deep ocean. The 18°C contour (in thick line) passes 42"N, but in Killworth 

and Edwards's model it only reaches 43"N. The maximum velocity at  the inflow  is about 60 

cm s-l, with velocities reaching about 100 cm s-l. The plume head remains a  sharper front 

12 



and turns upward to  the right, as expected from geostrophic adjustment  theory (Whelless and 

Klinck 1995). It should be noted that our model  gives a much thinner  bottom boundary layer 

than  that from the  K&E BBL. Both models  give an expected barotropic field with cyclonic 

circulation near the source region,  which  is consistent with the results of Whelless and Klinck 

(1995). Comparing the horizontal level at 482 m  depth, we see the new model also has an 

improved density field and  a stronger cyclonic  eddy. 

As there is no analytical solution for this  test problem, we choose to run  a topography- 

following coordinate model, the S-Coordinate Rutgers University  Model (SCRUM, Song and 

Haidvogel 1994) to verify our model results. It should be noted that a similar method is  also 

used  by Beckmann and Doscher (1997) for  verification of their results. For the SCRUM run, we 

use 20 vertical levels with a  stretching  parameter 8=3 and b = 1, allowing a higher-resolution 

near the bottom. For a better  bottom boundary layer, we use the Mellor-Yamada Level  I1 

turbulence closure scheme to calculate the  bottom boundary layer as shown  by Weatherly and 

Martin (1978). The  depth of the BBL  is the height at which the turbulent kinetic energy, or 

equivalently, the turbulent mixing, goes to zero. Results corresponding to Figures 4 and 5 are 

shown in Figure 6. It can be seen that  both EBBL and SCRUM generate a similar bottom 

boundary layer spreading across isobaths in a tonguelike  distribution.  Bottom flows are 

initially directed offshore, with subsequent anticyclonic recirculation and upslope transports. 

The 18°C contour (in thick line) passes 42"N to deep ocean as in the EBBL case.  However, 

SCRUM  gives a much weaker  cyclonic circulation near the source  region  in both  its barotropic 

field and the horizontal level at 482 m  depth, which might be due to numerical differences in 

solving the barotropic mode. For example, the surface variation in the z-coordinate model 

affects the  top level  only, rather  than being distributed  into the full column of water as in the 

SCRUM model.  More detailed results can be viewed in the cross-slope section of temperature 

anomaly for these three models in Figure 7, which  show that  the dense water in our EBBL 

model can penetrate as deep as that in SCRUM, but with a  rather simpler method. 
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4 Sensitivity Analysis and  Momentum Budget 

In the previous section, we have tested  and validated the model  by comparing with the most 

recent results of Killworth and Edwards (1998) and with the results from a topography- 

following coordinate model (SCRUM). This section is intended to quantify the sensitivity of 

the model to changes of model resolution, density contrast and diffusion parameters  and to 

investigate what role  is  played  by the new pressure gradient formulation. Since the travel 

speed of the plume depends on the initial density contrast, we will make  a short run (10 days) 

for the strong density contrast and a long run (60 days) for the weak density contrast in order 

to keep the plume within the computational domain. 

4.1 Model resolution 

In this  experiment, the model resolution is increased by a factor of 2 in  each spatial direc- 

tion and  time; all other model parameters remain unchanged. Ideally, the change of model 

resolution should not change the results of the overflow. The results are shown in Figure 8 

for both K&E  BBL and the new EBBL. Comparing with the results in Figure 5, we see that 

our EBBL model produces a tonguelike downslope plume and a prograded dense bottom 

water in a similar fashion to  the coarser-resolution case. It suggests that our method is  less 

sensitive to model resolution. However, results with the K&E BBL do not show  significant 

improvement. Clearly, in the coarser resolution case (1/4 degree and 15 levels, Figure 5) the 

new EBBL produces more realistic deep water than  the existing BBL with  higher resolution 

(1/8 degree and 30 levels, Figure 8), even though the  latter is 8 times more computationally 

expensive than  the former one. 

4.2 Diffusion  parameters 

In this  experiment, we use the same parameters as in the basic experiment (Figure 4 and 

5), except for the horizontal viscosity and diffusivity  coefficients,  which are reduced by  half. 
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Therefore, horizontal viscosity and diffusivity coefficients are 5 x lo3 and 1 x lo3 m2s-l. The 

results are shown in Figure 9  for both  K&E BBL and our new EBBL.  With lower viscosity 

and diffusivity, the K&E BBL produces  significantly  different results with an unstable bottom 

layer and shallower penetration of dense water. In contrast, the EBBL produces a similar 

solution to  that in the basic run (see Figure 5) except for a  sharper plume head as expected 

in the low  diffusion  case. This consistency indicates that our EBBL is not very sensitive to 

the horizontal viscosity and diffusivity  coefficients. 

4.3 Density contrast 

In this  experiment, we first increase the density contrast by a factor of 2, i.e., the cold water 

is  0°C and  the warm water is still 20°C. This  strong density contrast is clearly unrealistic, 

but it is  purposely  designed to  test  the model's ability to handle extreme cases. The results 

are shown in Figure 10 with the K&E BBL and with the new EBBL. Although both models 

produce a  bottom plume as expected, there  are significant  differences. The boundary layer 

depth in the  K&E BBL  is thicker with maximum thickness of  200 m, spreads all over the slope 

region, and the densest water travels further along isobaths with a diffusing plume head. On 

the other  hand, the boundary layer depth in the EBBL model has a  maximum  depth of 120 

m, is constrained to a more limited area,  and the dense bottom water moves  south-westward 

with a  sharp plume head. Density concentrations are strongly bottom intensified, as expected 

for a  thin dense water plume. 

In the second experiment, we decrease the density contrast by setting the cold water 

to 0°C and warm water 5"C,  which  is  closer to  the density contrast of the Denmark Strait 

overflow problem (Jungclaus  and Backhaus 1994). The results are given in Figure 11 for 

both methods. Again we see  big  differences  between these two methods and the shape of the 

plume is  changed dramatically. These two experiments  demonstrate that  the proposed EBBL 

is robust and works  well  for both  extreme cases. 
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4.4 Momentum  budget 

To  get more insight into the dynamical processes of the simulated plume, we carry out the 

following momentum budget analysis. The principal dynamical balance for the baroclinic 

velocities  is  between the pressure, Coriolis, and the bottom drag. The  other  terms in the 

equation are relatively small (Whelless and Klinck 1995), and  are therefore not analyzed 

here. The importance of the  bottom pressure gradient force  is best revealed  by examining 

the momentum balance in the bottom layer at a given longitude section. Figure 12 shows 

the  three  major  terms in the vB-equation (2.9) along a north-south section in the middle of 

the domain for K&E BBL (a), our new EBBL (b),  and SCRUM (c). It can be seen that 

the balance of the pressure gradient term with the Coriolis and  bottom  drag  terms in the 

new model is significantly improved compared with the K&E BBL results, although it is not 

as good as that in SCRUM. As we  know that  the development of the plume has reached a 

quasi-steady state after 30 days simulation by comparing the results at day 30 in Figure 4 

with that  at day 60 of K&E BBL (their Figure 4), the  momentum tendency is  negligible and 

the unbalanced part is compensated mainly from diffusion. This tells us the K&E model, 

although greatly improved over the original MOM model, is still too diffusive, consistent with 

their results shown in Figure 4 that  the plume is mostly diffused  along isobaths. 

5 Summary  and  Conclusions 

The  importance of adequate topographic representation in z-coordinate ocean models has 

been  realized recently by  large-scale  ocean  modelers. Winton et al. (1998), through process 

experiments, conclude that  the model solutions will  converge  when the z-coordinate model has 

sufficient vertical resolution to resolve the bottom viscous layer and horizontal grid spacing 

equal to  its vertical grid spacing divided by the  maximum slope (i.e., Ax M Az /a ,  where Q is 

the slope). Since a typical vertical scale  for the overflow plumes is 100 m  and  a typical slope  is 

0.01, these conditions imply that resolution on the oder of 30-50 m in the vertical and 3-5 km 
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in the horizontal will be needed to represent frictional sinking with reasonable accuracy. This 

resolution is prohibitive on today’s computer. This is  especially true for climate simulations 

which require thousands of modeled  years to establish a balance between downward advection 

of cold water and diffusion of heat. 

To tackle this problem, we have  developed an EBBL scheme  for improving the topo- 

graphic representation of z-coordinate ocean  models. The scheme  is  based on three com- 

bined techniques of an embedded topography-following slab (Beckmann  and Doscher  1997; 

Gnanadesikan et al. 1998), an explicit turbulent  bottom boundary layer (BBL) (Killworth 

and Edwards 1998), and a generalized pressure gradient formulation (Song  1998)  for  coupling 

the interior z-level model and the  bottom layer model. The model  is tested extensively with 

the known dynamics of dense slope flows and  three conclusions are reached: 

0 Our  method is simple, cost effective, and works  very  well  for the test problem. 

0 The EBBL scheme is not very sensitive to model resolution and  parameters. 

0 The down-slope pressure force plays an  important role  in simulating dense slope flows. 

In the introduction, we pointed out three consequences of using a steplike approximation 

of bottom topography. Although we only  focused  on the dense  slope flow in this test problem, 

the other two  issues  could in theory be improved with the topography-following feature in 

the EBBL scheme, but  further work,  such as testing the form stress problem proposed  by 

Haidvogel and Bechmann (1997), is  needed.  Clearly, further applications of the proposed 

EBBL to more realistic model configurations are needed. It is our intention to apply the 

EBBL to a realistic ocean model (Chao  et al.  1996) in the near future. Lastly, it should be 

pointed out that our EBBL scheme  is not limited to z-coordinate models. 

Acknowledgment: The research described in this manuscript was carried out at  the  Jet 

Propulsion Laboratory (JPL), California Institute of Technology, under a  contract with the 

National Aeronautics and Space Administration (NASA). Support from NASA High Perfor- 

mance Computing and Communication (HPCC) is  also  acknowledged. Computations were 

17 



performed on the Cray J-90 through the  JPL Supercomputing project.  Thanks to P.D.  Kill- 

worth and N.R. Edwards for providing their BBL  code and valuable  discussions, and to L.-L. 

Fu at JPL for  his continuous support.  Comments from two anonymous reviewers  helped to 

improve the original manuscript. 

REFERENCES 

Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by  shaved  cells in 

a height coordinate ocean model, Mon. Wear.  Rev., 125, 2293-2315. 

Arakawa, A., and M. J. Suarez, 1983: Vertical differencing of the primitive equations in 

Sigma Coordinates, Mon. Wear.  Rev., 111, 34-45. 

Beckmann, A. and R. Doscher,  1997: A method for  improved representation of dense water 

spreading over topography in geopotential-coordinate models. J.  Phys. Oceanogr., 27, 

581-591. 

Bleck, R., C. Rooth, D. Hu and L. Smith, 1992: Salinity-driven thermocline transients in 

a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic, J .  

Phys. Oceanogr., 22, 1486-1505. 

Broecker, W.S., 1991: The great ocean  conveyor. Oceanography, 4, 79-89. 

Bryden, H.L., and T.H. Kinder, 1991: Steady two-layer  exchange through the  Strait of 

Gibraltar, Deep-sea  Res., 93, 1281-1292. 

Bryan, K., 1969: A numerical method for the  study of the circulation of the world ocean, J .  

C O ~ P .  Phys., 4(3), 347-376. 

Chao, Y., A. Gangopadhyay, F.O. Bryan,  and W.R. Holland,  1996:  Modeling the Gulf 

Stream system: How far from reality? Geophy.  Res.  Letters, 23 (22), 31553158. 

Cox, M.D., 1984: A primitive equation, 3-dimensional  model of the ocean. GFDL Ocean 

Group Technical Report No. 1, GFDL/NOAA. Princeton University,  143 pp. 

18 



Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, 

rates and pathways, J.  Geophys. Res. , 99, 12,319-12,341. 

Gnanadesikan, A., M. Winton,  and R. Hallberg, 1998: Representing the  bottom boundary 

layer  in the GFDL ocean  model:  Model framework, dynamical impacts, and parameter 

sensitivity. J .  Phys. Oceanogr., 28, in  press. 

Haidvogel, D. B., and A. Beckmann, 1997: Numerical models of the coastal ocean, The Sea, 

Vol. 10, K. H. Brink and A. R. Robinson, eds.; 457-482. 

Haney, R. L., 1991: On the pressure gradient force  over steep topography in sigma coordinate 

ocean models, J.  Phys. Oceanogr., 21, 610-619. 

Hughes,  C. W., 1995: A warning about topography in the Cox code, Ocean  Modeling , 106, 

unpublished manuscript. 

Jungclaus, J. H., and J. 0. Backhaus, 1994: Application of a  transient reduced gravity plume 

model to  the Denmark  Strait overflow. J.  Geophy. Res., 99, 12,37512,396. 

Killworth, P. D., and N. R. Edwards, 1998: A turbulent  bottom boundary layer  code  for  use 

in numerical ocean models, Submitted to J.  Phys. Oceanogr.. 

Killworth, P.D.,  D. Stainforth, D.J. Webb, and S. Paterson, 1991: The development of a 

free surface Bryan-Cox-Semtner model, J. Phys.  Oceanogr., 21, 1333-1348. 

Marshall, J., C., Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic 

and non-hydrostatic ocean modeling, J.  Geophys. Res., 102 (C3), 5733-5752. 

19 



McWilliams, J. C., 1996:  Modeling the ocean general circulation, Ann.  Rev. Fluid Mech. 

28, 215248. 

Middleton, J. F. and D. Ramsden, 1996: The revolution of the  bottom boundary layer on the 

sloping continental shelf: A numerical study, J .  Geophys.  Res., 101 (C8), 18061-18077. 

Price, J. F., and M.O. Baringer, 1994:  Outflows and deep water production by marginal 

seas, Prog.  Oceanogr., 33, 161-200. 

Roberts, M.J., and R.A. Wood, 1997: Topographic sensitivity studies with a Bryan-Cox- 

Type ocean model, J.  Phys. Oceanogr., 27, 823-836. 

Semtner, A. J., 1995: Modeling  ocean circulation, Science, 269, 1379-1385. 

Song, Y. ,  1997: A general pressure gradient formulation for ocean models Part I: Scheme 

design and diagnostic analysis, Mon.  Wear.  Rev., 12, 3213-3230. 

Song, Y .  and D. Haidvogel,  1994: A semi-implicit  ocean circulation model  using a generalized 

topography-following coordinate system, J .  Comput.  Physics, 115 (1)) 228-244. 

Song, Y . ,  and D. Wright, 1997: A general pressure gradient formulation for  ocean models 

Part 11: Energy, Momentum,  and  Bottom Torque Consistency, Mora. Wear.  Rev., 12, 

3231-3247. 

Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, strat- 

ified flow in a /?-plane channel: An idealized  model  for the Antarctic Circumpolar 

Current, J .  Phys.  Oceanogr., 20, 321-343. 

Weatherly, G. L. and P. J. Martin, 1978: On the  structure  and dynamics of the oceanic 

bottom boundary layer, J .  Phys.  Oceanogr., 8, 557-570. 

Whelless, G. H, and J. M. Klinck, 1995: The evolution of density-driven circulation over 

sloping bottom topography, J.  Phys. Oceanogr., 25, 888-901. 

Whitehead, J. A., 1989: Giant Ocean Cataracts, Scientific  American, February, 50-57. 

20 



Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional 

downslope flow in z-coordinate ocean models, J .  Phys. Oceanogr., 28, 2163-2174. 

Zilitinkevich, S., and D. V. Mironov, 1996: A multi-limit formulation for the equilibrium 

depth of a stably  stratified  boundary  layer, Bound-Lay.  Meteor., 81, 325-351. 

21 



Figure 1: Schematic of embedded bottom  boundary layer (EBBL). Heavy  bold line is the 

bottom topography, light bold line is embedded in the  bottom grid cell (at  the 1/4 of the 

grid height below the lowest density  point)  and the dash-line is the surface of the BBL 

depth. Bars denote velocity locations and Dotes and circle denote  tracer locations, where 

only dotes are used  for calculating the  bottom pressure gradient for the BBL. Bold arrow 

represents entrainment/detrainment  and box arrow represents the coupling of the  bottom 

pressure gradient. 
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Figure 2: Perspective view of the model domain for the  test problem. 
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Figure 3: Results  after 30 days integration  with the free surface MOM model (without BBL, 

Killworth et al. 1991) run. Shown are (a)  depth of bottom  boundary  layer(zero in this case as 

no BBL is coupled); (b) free surface elevation and barotropic velocity; (c)  bottom boundary 

layer temperature  and velocity; (d) temperature  and velocity at 482 m depth. 
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Figure 4: Results after 30 days integration  with K&E BBL. Shown are  (a)  depth of bottom 

boundary layer; (b) free surface  elevation and barotropic velocity; (c)  bottom  boundary layer 

temperature  and velocity; (d)  temperature  and velocity at 482 m depth. 
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Figure 5:  As for Figure 4, but with the new EBBL. The maximum depth of the BBL in (a) 

is 60 m and  the contour interval is 5 m.  The thick line in ( c )  and  (d) is the 18°C isotherm. 
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Figure 6: As for Figure 4, but results from SCRUM  using the Mellor-Yamada  Level I1 turbu- 

lence  closure  scheme  for the BBL. The  depth of the BBL is the height at which the turbulent 

kinetic energy  goes to zero. 
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Figure 7: Cross-slope section for temperature anomaly  after 30 days integration. Shown are 

(a) from K&E BBL; (b) from the new EBBL; (c) from SCRUM. Contour  interval is 0.5"C. 
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Figure 8: Model results after 30 days with increased  resolution  by a factor of 2 in each 

spatial direction and  time. Shown are depth of bottom boundary  layer(upper  panels); bottom 

boundary layer temperature and velocity(1ower panels); left  panels from K&E BBL and right 

panels from the new EBBL. 
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Figure 9: Model results  after 30 days with reduced viscosity and diffusivity by a half.  Shown 

are  depth of bottom boundary  layer(upper  panels); bottom  boundary layer temperature  and 

velocity(1ower panels); left panels from K&E BBL and right panels from the new EBBL. 
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Figure 10: Model results  after 10 days integration with increased density contrast (0°C to 

20°C). Shown are  depth of bottom  boundary  layer(upper panels); bottom  boundary layer 

temperature and velocity(1ower panels); left panels from K&E BBL and right  panels from the 

new EBBL. 
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Figure 11: Model results  after 60 days  integration  with decreased density  contrast (0°C to 

5°C). Shown are  depth of bottom boundary  layer(upper  panels);  bottom  boundary layer 

temperature  and velocity(1ower panels); left panels from K&E BBL and right panels from the 

new EBBL. 
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Figure 12: Bottom layer term balance  in the northward  momentumequation at mid-longitude 

in the diagram, (a) for the  K&E BBL, (b) for the new EBBL, and ( c )  for SCRUM. Units  are 
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33 


